1.若loga2<1,则实数a的取值范围是( )
A.(1,2) B.(0,1)∪(2,+∞)
C.(0,1)∪(1,2) D.(0,12)
解析:选B.当a>1时,loga2
2.若loga2
A.0
C.a>b>1 D.b>a>1
解析:选B.∵loga2
∴0
3.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是( )
A.[22,2] B.[-1,1]
C.[12,2] D.(-∞,22]∪[2,+∞)
解析:选A.函数f(x)=2log12x在(0,+∞)上为减函数,则-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o m
解得22≤x≤2.
4.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的值为( )
A.14 B.12
C.2 D.4
解析:选B.当a>1时,a+loga2+1=a,loga2=-1,a=12,与a>1矛盾;
当0
loga2=-1,a=12.
5.函数f(x)=loga[(a-1)x+1]在定义域上( )
A.是增函数 B.是减函数
C.先增后减 D.先减后增
解析:选A.当a>1时,y=logat为增函数,t=(a-1)x+1为增函数,∴f(x)=loga[(a-1)x+1]为增函数;当0
∴f(x)=loga[(a-1)x+1]为增函数.
6.(2009年高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则( )
A.a>b>c B.a>c>b
C.c>a>b D.c>b>a
解析:选B.∵1
∴0
∵0
又c-b=12lg e-(lg e)2=12lg e(1-2lg e)
=12lg e•lg10e2>0,∴c>b,故选B.
7.已知0
解析:∵0
又∵0
答案:3
8.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.
解析:由图象关于原点对称可知函数为奇函数,
所以f(-x)+f(x)=0,即
log21-xa+x+log21+xa-x=0⇒log21-x2a2-x2=0=log21,
所以1-x2a2-x2=1⇒a=1(负根舍去).
答案:1
9.函数y=logax在[2,+∞)上恒有|y|>1,则a取值范围是________.
解析:若a>1,x∈[2,+∞),|y|=logax≥loga2,即loga2>1,∴1
答案:12
10.已知f(x)=?6-a?x-4a?x<1?logax ?x≥1?是R上的增函数,求a的取值范围.
解:f(x)是R上的增函数,
则当x≥1时,y=logax是增函数,
∴a>1.
又当x<1时,函数y=(6-a)x-4a是增函数.
∴6-a>0,∴a<6.
又(6-a)×1-4a≤loga1,得a≥65.
∴65≤a<6.
综上所述,65≤a<6.
11.解下列不等式.
(1)log2(2x+3)>log2(5x-6);
(2)logx12>1.
解:(1)原不等式等价于2x+3>05x-6>02x+3>5x-6,
解得65
所以原不等式的解集为(65,3).
(2)∵logx12>1⇔log212log2x>1⇔1+1log2x<0
⇔log2x+1log2x<0⇔-1
⇔2-1
∴原不等式的解集为(12,1).
12.函数f(x)=log12(3x2-ax+5)在[-1,+∞)上是减函数,求实数a的取值范围.
解:令t=3x2-ax+5,则y=log12t在[-1,+∞)上单调递减,故t=3x2-ax+5在[-1,+∞)单调递增,且t>0(即当x=-1时t>0).
因为t=3x2-ax+5的对称轴为x=a6,所以a6≤-18+a>0⇒a≤-6a>-8⇒-8