三角函数中的周期公式

发布时间:2022-09-20分类:高考资讯
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。下面我们就来学习三角函数的周期。

三角函数的图像

常见的三角函数包括正弦函数、余弦函数和正切函数。我们知道三角函数的图像是有循环周期的,如果已知该函数的图像,那么完成一次振动所需要的时间,就是三角函数的周期。如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。

三角函数周期公式

要想求一个三角函数的周期,最直观的方法是将它的图像画出来,然后观察它的循环周期,当然也可以用公式法来求三角函数周期。

三角函数的周期通式表达式为:正弦:y=Asin(ωx+t);余弦:y=Acos(ωx+t);正切:y=Atan(ωx+t)。在ω>0的条件下:A表示三角函数的振幅;三角函数的周期公式为:T=2π/ω;三角函数的频率f=1/T。因此只要知道ω的值,就可以解决三角函数求周期的问题。在解题时首先要对题目给出的函数式进行化简和以及整合,才能准确求出ω的数值。

以上就是三角函数周期的公式。对于正弦函数y=sin x,自变量x只要并且至少增加到x+2π时,函数值才能重复取得。正弦函数和余弦函数的最小正周期是2π。