一元二次方程的五种解法公式

发布时间:2023-01-11分类:初一辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

一元二次方程是中考的重点内容,也是初中数学学习的重点,下面是一元二次方程的解法总结,供大家参考。

一、直接开平方法

若x^2=a(a≥0),则x叫做a的平方根,表示x=±√α,这种解一元二次方程的方法叫做直接开平方法。有一点是需要注意的,就是直接开平方得到的是两个解。

二、配方法

将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解的方法。

步骤:

①把原方程化为一般形式。

②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。

③方程两边同时加上一次项系数一半的平方。

④把左边配成一个完全平方式,右边化为一个常数。

⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

三、因式分解法

当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解,这种用分解因式解一元二次方程的方法叫做因式分解法.因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,ab=0,那么a=0或者b=0。

四、图像解法

一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。

当△>0时,则该函数与x轴相交(有两个交点)。

当△=0时,则该函数与x轴相切(有且仅有一个交点)。

当△<0时,则该函数与轴x相离(没有交点)。

五、公式法

利用求根公式,直接求解。把一元二次方程的各系数代入求根公式,直接求出方程的解。一般步骤为:(1)把方程化为一般形式;(2)确定a、b、c的值;(3)计算b-4ac的值;(4)当b-4ac≥0时,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;当b-4ac<0时,方程没有实数根。需要注意的是:公式法是解一元二次方程的一般方法,又叫万能方法,对于任意一个一元二次方程,只要有解,就一定能用求根公式解出来。求根公式是用配方法解一元二次方程的结果,用它直接解方程避免繁杂的配方过程。因此没有特别要求,一般不会用配方法解方程。