无理数与有理数的区别是什么

发布时间:2022-12-22分类:初一辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

这篇文章小编给大家分享什么是有理数、什么是无理数、以及有理数和无理数的区别,一起来看一下吧。

有理数

有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

无理数

无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。

有理数和无理数的区别

1.性质区别:

有理数是两个整数的比,总能写成整数、有限小数或无限循环小数

无理数不能写成两个整数之比,是无限不循环小数。

2.结构区别:

有理数是整数和分数的统称。

无理数是所有不是有理数的实数,

3.范围区别:

有理数集是整数集的扩张,在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算均可进行。

无理数是指实数范围内不能表示成两个整数之比的数。