无理数集相当于实数集中有理数集的补集。无理数集合符号为CrQ。下面是无理数集合符号的相关知识点,供大家参考。
无理数集合符号是什么
无理数集相当于实数集中有理数集的补集。无理数集合符号为CrQ。实数集为R;有理数集为Q。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
数学集合符号
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、? :空集(不含有任何元素的集合)