解向量指的是方程组的解,而基础解系是在齐次线性方程组的解里面的一些特殊解,同时这些解还能表示出所有的解,并且个数还是最少的。基础解系是在有无数多组解的方程的情况下讨论的,另外所有的解向量都可以用基础解系线性来表示,而且解向量的极大线性无关组就是基础解系。
基础解系和解向量的联系
基础解系是齐次线性方程组的解中的一些特殊解,这些解能表示出所有解,并且个数最少。解向量就是方程组的解。
x1,x2不是基础解系,基础解析必然和原始方程中x的分量个数一样,x1,x2只是用于解出基础解系的中间变量而已。n1,n2才是基础解系。
所有解向量(个数无限)都可以由基础解系线性表示。
解向量的极大线性无关组就是基础解系。
基础解系是针对有无数多组解的方程而言,若是齐次线性方程组则应是有效方程的个数少于未知数的个数,若非齐次则应是系数矩阵的秩等于增广矩阵的秩,且都小于未知数的个数。
如果n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r