两个奇函数的乘积是偶函数证明过程

发布时间:2022-09-29分类:初一辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

是。证明过程如下:设f(x),g(x)均为奇函数,则f(-x)=-f(x),g(-x)=-g(x),因为f(-x)·g(-x)=[-f(x)]·[-g(x)]=f(x)·g(x),所以f(x)·g(x)为偶函数。

奇函数性质

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

1.奇函数图象关于原点对称;

2.如果奇函数在x=0上有定义,那么有f(0)=0;

3.满足f(-x)=-f(x);

4.关于原点对称的区间上单调性保持一致;

5.定义域关于原点对称。(奇偶函数共有)

偶函数性质

如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

1.偶函数图象关于y轴对称;

2.满足f(-x)=f(x);

3.关于原点对称的区间上单调性相反;

4.如果一个函数既是奇函数又是偶函数,那么有f(x)=0;

5.定义域关于原点对称。(奇偶函数共有)