有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集包括整数集、分数集、小数集、自然数集等。实数集包括有理数集和无理数集。
有理数集包括什么
(1)整数集:由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
(2)分数级:全体分数组成的集合叫分数集,在集合上用Q来表示,不包括正整数、负整数和零。
(3)小数集:全体小数组成的集合叫做分数级。小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。
(4)自然数集:自然数集指的是自然数的集合,即非负整数全体构成的集合,也叫非负整数集。 数学上用字母"N"表示。
实数集包括什么
实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。定义是由四组公理为基础的:
(1)加法定理;(2)乘法定理;(3)序公理;(4)完备公理。