实数集和有理数集包括什么内容

发布时间:2022-09-09分类:初一辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

有理数集,即由所有有理数所构成的集合,用黑体字母Q表示。有理数集包括整数集、分数集、小数集、自然数集等。实数集包括有理数集和无理数集。

有理数集包括什么

(1)整数集:由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。

(2)分数级:全体分数组成的集合叫分数集,在集合上用Q来表示,不包括正整数、负整数和零。

(3)小数集:全体小数组成的集合叫做分数级。小数,是实数的一种特殊的表现形式。所有分数都可以表示成小数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。

(4)自然数集:自然数集指的是自然数的集合,即非负整数全体构成的集合,也叫非负整数集。 数学上用字母"N"表示。

实数集包括什么

实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。定义是由四组公理为基础的:

(1)加法定理;(2)乘法定理;(3)序公理;(4)完备公理。