特征根法定义及数列通项公式定义

发布时间:2023-02-01分类:初三辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

数列{a(n)},设递推公式为a(n+2)=p*a(n+1)+q*a(n),则其特征方程为x^2-px-q=0。若方程有两相异根A、B,则a(n)=c*A^n+d*B^n,若方程有两等根A=B,则a(n)=(c+nd)*A^n。

特征根法定义

1.特征根法是解常系数齐次线性微分方程的一种通用方法。

2.特征根法也可用于求递推数列通项公式,其本质与微分方程相同。

3.r*r-p*r-q称为对递推数列:a(n+2)=pa(n+1)+qan的特征方程。

数列通项公式定义

按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。