一元二次方程的求根公式是怎么来的

发布时间:2022-10-09分类:初三辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

一元二次方程求根公式是x=[-b±√(b^2-4ac)]/2a,标准形式为:ax²+bx+c=0(a≠0)。下面就和小编一起了解一下吧,供大家参考。

一元二次方程求根公式

当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a

当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a

只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax²+bx+c=0(a≠0)其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程求根公式推导过程

一元二次方程的根公式是由配方法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程如下,

1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0,

2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2,

3、配方得x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即(x+b/2a)^2=(b^2-4ac)/4a,

4、开根后得x+b/2a=±[√(b^2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。

一元二次方程解法

一:直接开平方法

形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。

二:配方法

1.二次项系数化为1;

2.移项,左边为二次项和一次项,右边为常数项;

3.配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式;

4.利用直接开平方法求出方程的解。

三:公式法

现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。

四:因式分解法

如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。