三角形全等条件的口诀

发布时间:2022-09-29分类:初三辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

证明两个全等三角形的方法有边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。

全等三角形的概念

经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

通常把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

全等三角形的判定

1.边边边(SSS):有三边对应相等的两个三角形全等。它用于证明两个三角形全等。该定理最早由欧几里得证明。

2.边角边(SAS):各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。

3.角边角(ASA):两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。

角边角是三角形全等的判定方法之一,需要注意的是角边角中的边必须是两个角公共的一条边(一个角是由两条边组成的,三角形中的任意两个角都有一条公共边)。

4.角角边(AAS):

角边角是指两个角和这两个角的公共边,角边角定理可以推出全等。角角边是指两个角和另外一个非公共边,角角边也可以推出全等。

5.直角边(HL):HL定理是证明两个直角三角形全等的定理,通过证明两个直角三角形直角边和斜边对应相等来证明两个三角形全等。

全等三角形的性质

1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.能够完全重合的顶点叫对应顶点。

4.全等三角形的对应边上的高对应相等。

5.全等三角形的对应角的角平分线相等。

6.全等三角形的对应边上的中线相等。

7.全等三角形面积和周长相等。

8.全等三角形的对应角的三角函数值相等。