三角函数的导数公式及运算法则

发布时间:2022-09-22分类:初三辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

导数,也叫导函数值。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。接下来小编就给大家分享三角函数的导数公式,供参考。

三角函数的导数公式

正弦函数:(sinx)'=cosx

余弦函数:(cosx)'=-sinx

正切函数:(tanx)'=sec²x

余切函数:(cotx)'=-csc²x

正割函数:(secx)'=tanx·secx

余割函数:(cscx)'=-cotx·cscx

反三角函数的导数公式

反正弦函数:(arcsinx)'=1/√(1-x^2)

反余弦函数:(arccosx)'=-1/√(1-x^2)

反正切函数:(arctanx)'=1/(1+x^2)

反余切函数:(arccotx)'=-1/(1+x^2)

反三角函数的导数公式推导过程

反三角函数的导数公式推导过程是利用dy/dx=1/(dx/dy),然后进行相应的换元,

比如说,对于正弦函数y=sinx,都知道导数dy/dx=cosx,

那么dx/dy=1/cosx,

而cosx=√(1-(sinx)^2)=√(1-y^2),所以dx/dy=√(1-y^2),

y=sinx可知x=arcsiny,而dx/dy=1/√(1-y^2),所以arcsiny的导数就是1/√(1-y^2),

再换下元arcsinx的导数就是1/√(1-x^2)。