多边形内角和公式为:(n-2)*180,所以八边形内角和为:6*108=1080。八边形由八条线段首尾相连围成的封闭图形,它有八条边、八个角。八边形可分为正八边形和非正八边形。外角和为360度。
多边形内角和公式证明
设多边形的边数为N
则其外角和=360°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°
初高中视频课程免费试听20小时 | ||
---|---|---|
1初一全科精品视频课程免费试听 | 2初二全科精品视频课程免费试听 | 3初三全科精品视频课程免费试听 |
4高一全科精品视频课程免费试听 | 5高二全科精品视频课程免费试听 | 6高三全科精品视频课程免费试听 |
多边形内角和公式为:(n-2)*180,所以八边形内角和为:6*108=1080。八边形由八条线段首尾相连围成的封闭图形,它有八条边、八个角。八边形可分为正八边形和非正八边形。外角和为360度。
多边形内角和公式证明
设多边形的边数为N
则其外角和=360°
因为N个顶点的N个外角和N个内角的和
=N*180°
(每个顶点的一个外角和相邻的内角互补)
所以N边形的内角和
=N*180°-360°
=N*180°-2*180°
=(N-2)*180°
即N边形的内角和等于(N-2)*180°