复数的定义和基本性质实用意义

发布时间:2022-08-26分类:初三辅导
初高中视频课程免费试听20小时
1初一全科精品视频课程免费试听 2初二全科精品视频课程免费试听 3初三全科精品视频课程免费试听
4高一全科精品视频课程免费试听 5高二全科精品视频课程免费试听 6高三全科精品视频课程免费试听

我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。下面和小编具体了解一下吧,供大家参考。

复数的定义

复数是形如a+bi的数。式中a,b为实数,i是一个满足i^2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。

在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数常用形式z=a+bi叫做代数式。

基本性质

1、共轭复数所对应的点关于实轴对称。

2、两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。

3、在复平面上,表示两个共轭复数的点关于X轴对称。

复数的表示形式

1.几何形式。复数z=a+bi用直角坐标平面上点Z(a,b)表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。

2.向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。

3.三角形式。复数z=a+bi化为三角形式。

z=|z|(cosθ+isinθ)式中|z|=,叫做复数的模(或绝对值);θ是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。

4.指数形式。将复数的三角形式z=|z|(cosθ+isinθ)中的cosθ+isinθ换为eiq,复数就表为指数形式。

z=|z|eiq,复数的乘、除、乘方、开方可以按照幂的运算法则进行。