高中网上学习网站哪个好

分类:高三网校排名 来源:简单学习网 2020-08-13 12:03:20
简单学习网 简单学习网

同步课本全科课程/必备学霸学习秘籍/5年中高考真题题库

免费试学

高中网上学习网站哪个好,简单学习网的课程不错,提分很有效果,当然平时在学校也要认真学习,网校只是辅助作用。

数学归纳法的应用

数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。

一、用数学归纳法证明整除问题

用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。

例1、是否存在正整数m,使得f(n)=(2n+7)•3n+9对任意自然数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.

证明:解:由f(n)=(2n+7)•3n+9,得f(1)=36, f(2)=3×36, f(3)=10×36, f(4)=34×36,由此猜想m=36.

下面用数学归纳法证明:

(1)当n=1时,显然成立.

(2)假设n=k时, f(k)能被36整除,即f(k)=(2k+7)•3k+9能被36整除;当n=k+1时,[2(k+1)+7]•3k+1+9=3[(2k+7)•3k+9]+18(3k--1-1),

由于3k-1-1是2的倍数,故18(3k-1-1)能被36整除.这就是说,当n=k+1时,f(n)也能被36整除.

由(1)(2)可知对一切正整数n都有f(n)=(2n+7)•3n+9能被36整除,m的最大值为36.

二、用数学归纳法证明恒等式问题

对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性.

 

以上就是关于高中网上学习网站哪个好的详细介绍,更多与高中网校辅导有关的内容,请继续关注比网校,希望本文对你有所帮助。

考生推荐